亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码
       
      Scientists suggest a new tactic for starving tumors
                       Source: Xinhua | 2018-06-26 03:31:23 | Editor: huaxia

      In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

      WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

      A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

      Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

      They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

      Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

      However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

      In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

      Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

      The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

      When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

      The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

      There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

      If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

      Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

      That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

      Back to Top Close
      Xinhuanet

      Scientists suggest a new tactic for starving tumors

      Source: Xinhua 2018-06-26 03:31:23

      In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

      WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

      A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

      Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

      They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

      Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

      However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

      In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

      Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

      The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

      When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

      The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

      There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

      If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

      Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

      That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

      010020070750000000000000011105091372803221
      主站蜘蛛池模板: 河津市| 久久香蕉国产线看观看精品蕉| 欧美亚洲日本国产黑白配| 国产亚洲精品不卡在线| 国产美女直播一区二区| 久久久精品免费国产四虎| 88久久久久无码国产精品 | 成人伊人亚洲人综合网站| 日韩人妻无码精品系列专区无遮| 渭源县| 无码在线观看123| 国产欧美一区二区三区免费视频| 好男人在在线社区www在线影院| 一区二区三区国产高潮| 人妻中文字幕一区二区二区| 手机AV片在线| 久久午夜夜伦鲁鲁片免费无码 | 微拍福利一区二区三区| 国产精品久久自在自2021| 女人高潮被爽到呻吟观看| 国产一级毛片卡| 加勒比在线一区二区三区| 精品亚洲国产成人痴汉av| 日韩av中出在线免费播放网站| 日韩有码中文字幕第一页| 亚洲va久久久噜噜噜久久狠狠| 国产亚洲高清在线精品99| 女同在线观看免费网站| 精品国产福利一区二区三区| 国产中文字幕日韩精品| 大肉大捧一进一出视频出来呀| 精品少妇av一区二区| 日韩偷拍视频一区二区三区| 久久久久99精品成人片欧美一区 | 日本一区二区三区中文字幕视频| 国产精品一区二区在线观看| 在线视频一区二区亚洲| 国产一区二区三区高清在线 | 黄 色 成 年 人 网 站免费| 456亚洲老头视频| 日韩欧美视频第一区在线观看|