"/>

      亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码

      Chinese, American scientists develop tiny gel balls to predict cancer

      Source: Xinhua    2018-05-15 00:52:35

      WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

      In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

      This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

      According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

      Although small on a human scale, the traction plays a fundamental role in cell physiology.

      "If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

      As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

      "The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

      To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

      When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

      Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

      This ability to quantify force in cells may be very important to cancer cell research, Wang said.

      The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

      "We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

      Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

      "Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

      This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

      Editor: Mu Xuequan
      Related News
      Xinhuanet

      Chinese, American scientists develop tiny gel balls to predict cancer

      Source: Xinhua 2018-05-15 00:52:35

      WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

      In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

      This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

      According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

      Although small on a human scale, the traction plays a fundamental role in cell physiology.

      "If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

      As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

      "The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

      To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

      When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

      Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

      This ability to quantify force in cells may be very important to cancer cell research, Wang said.

      The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

      "We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

      Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

      "Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

      This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

      [Editor: huaxia]
      010020070750000000000000011105091371788141
      主站蜘蛛池模板: 精品人妻av一区二区三区不卡| 欧美高清在线视频一区二区| 色爱综合亚洲av综合| 麻豆精品av国产一区久久| 久久国产亚洲一区二区三区| 人妻丰满少妇一二三区| 国精品无码一区二区三区在线看 | 精品久久高清| 国产久热精品热线av| 国产午夜激情视频自拍| 色综合色综合久久综合频道| 来安县| 男人天堂av在线成人av| 人妻无码aⅴ中文系列久久免费| 无码人妻中文中字幕一区二区| 嗯啊 不要 啊啊在线日韩a| 久久精品国产亚洲av忘忧草18| 亚洲一区二区在线av| 天天澡日日澡狠狠欧美老妇| 精品欧美一区二区三区在线| 国产乱子伦视频在线播放| 日韩在线精品在线观看| 国产三级在线看完整版| 鄂伦春自治旗| 亚洲国产成人精品福利在线观看| 国产熟睡乱子伦视频网站| 国产精品欧美福利久久| 亚洲处破女 www| 亚洲精品日本| 国产精品免费av一区二区| 无码午夜剧场| 国产成人亚洲精品日韩激情| 国产精品视频亚洲二区| 国产亚洲精品拍拍拍拍拍| 久久99av无色码人妻蜜柚| 亚洲色图视频在线播放| 日韩精品一区二区三区毛片| 女人高潮被爽到呻吟观看| 第九色区Aⅴ天堂| 青青草免费观看高清视频| 五月一区二区久久综合天堂|