"/>

      亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua    2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      Editor: yan
      Related News
      Xinhuanet

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua 2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      [Editor: huaxia]
      010020070750000000000000011105521371069391
      主站蜘蛛池模板: 毛片无码一区二区三区| 香蕉久久av男人一区二区| 禹州市| 久久久亚洲经典视频| 最新最近中文字幕亚洲| 国产三级精品三级在线专区1| 欧美丰满老妇性猛交| 国产AV秘 无码一区二区三区| 久久亚洲精品成人av| 国产精品不卡无码AV在线播放| 成人午夜高潮a∨猛片| 亚洲一二三四五区中文字幕| 亚洲精品国产av一区二区| 日本精品国产1区2区3区 | 无码91 亚洲| 亚洲AV永久青草无码性色av| 久久热99这里只有精品| 成人3D动漫一区二区三区| 人妻av一区二区三区av免费| 建湖县| 亚洲成AV人在线观看网址| 国产精品精华液网站| 无码日韩精品一区二区免费暖暖| 久久久亚洲日本精品一区| 久久精品国产亚洲综合色| 久久久久久一品道精品免费看| 又黄又爽又刺激又色的视频| 国产男女做爰猛烈视频网站 | 尤物AV无码色AV无码麻豆| 国产一级片内射在线视频| 国产伦精品一区二区三区视频三级 | 女同一区二区三区不卡免费| 区无码字幕中文色| 97人人添人澡人人爽超碰| 亚洲一区二区三区免费av在线| 蜜桃视频福利在线观看| 国产呦精品一区二区三区网站| 伊人成伊人成综合网222| 亚洲美女av一区二区| 久久迷青品着产亚洲av网站| 毛片无码一区二区三区|