"/>

      亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua    2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      Editor: yan
      Related News
      Xinhuanet

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua 2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      [Editor: huaxia]
      010020070750000000000000011105521371069391
      主站蜘蛛池模板: 无码人妻丰满熟妇区五十路在线 | 热久久网站| 亚洲中文字幕日产喷水| 日韩一区二区三区无码人妻视频 | 偷拍激情视频一区二区| 国产精品丝袜美腿视频一区| 成 人 网 站 在线 看 免费| 亚洲精品无码日韩国产不卡av| 中文一区二区视频| 在线a人片免费观看国产| 精品少妇av一区二区| 国产精品欧美视频另类专区| 亚洲熟妇乱色一区二区三区| 在线视频免费观看| 亚洲av成人一区二区三区网址| 亚洲AV无码一区二区三区天堂网 | 亚洲av熟女国产一二三| 久久久久久人妻一区二区无码Av| 国产精品区一区二区三在线播放| 亚洲—本道中文字幕久久66| 少女たちよ在线观看动漫4| 亚洲精品动漫免费二区| 69搡老女人老妇女老熟妇| 成人网站免费观看永久视频下载| 精品久久久久久777米琪桃花| 蜜桃成人午夜激情网站| 国产精品天堂蜜av在线播放| 国产伦码精品一区二区| 日本成熟少妇喷浆视频 | 97色人阁俺也去人人人人人| 免费h动漫无码网站| 成在人线av无码免费高潮喷水| 二区三区国产在线观看| 日韩精品一区二区三区四区视频| 精品国产成人午夜福利| 久久亚洲精品三级影片| 精品的一区二区三区| 久久久久久久妓女精品免费影院| aaa少妇高潮大片免费看| 精品成人av一区二区三区在线| 亚洲乱码中文字幕综合69堂|